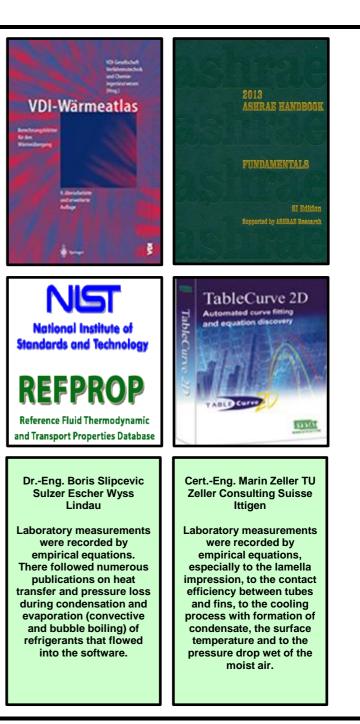
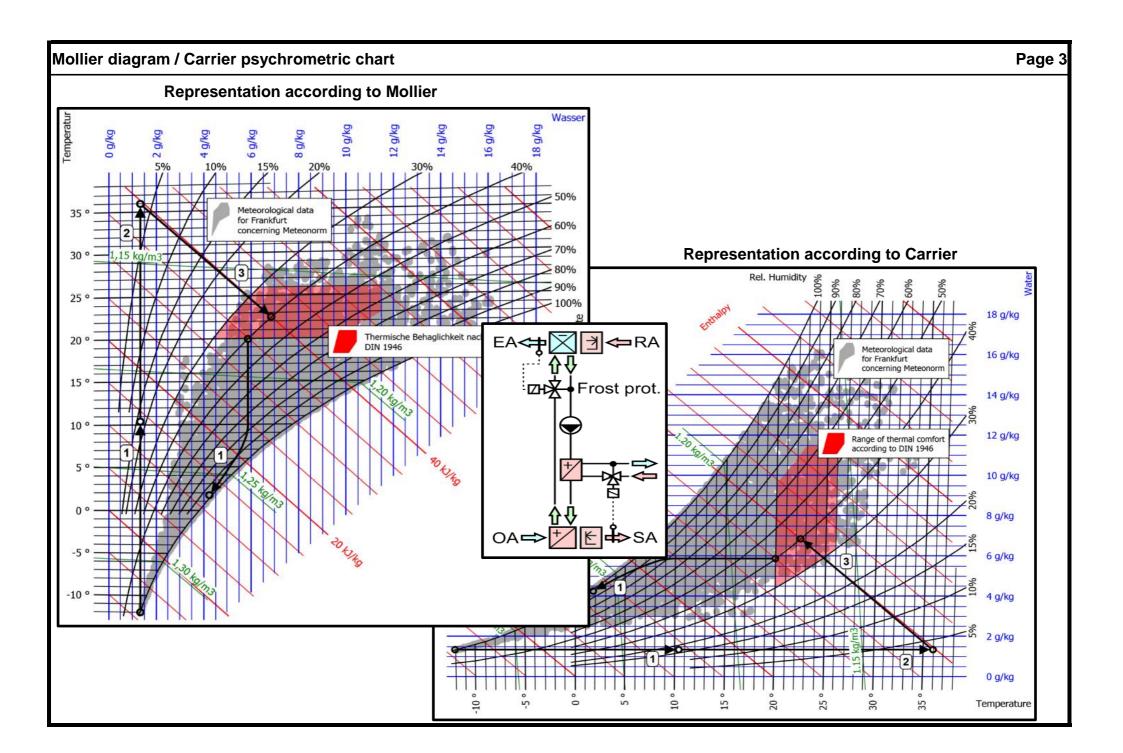

Zeller's manual for air-conditioning (4 editions from 1994 to 1999)

Now we write the year 2017 and there are still requests for this book, which has been out of print for many years and is no longer reissued. Meanwhile, electronic distribution channels have largely replaced books, with the advantage that necessary corrections and additions can be implemented much easier. The book was developed from the experiences in the field of climatic engineering when handling humid air since 1970. It did not contain any fundamentally new insights. It was more than one compendium for interested professionals, engineers, lecturers and students. Furthermore it has been used gladly and actively as a supplementary specialist book to our varied multilingual software.

- AHH Mollier diagram and Carrier psychrometric chart with air processes. Range -100/300°C, 0/1000 g/kg, -5000/15000 m, 0.03/16 bar. 150 meteorologcical data, further locations from Meteonorm. 3 different ranges of comfort zone from DIN and ASHRAE. Show your individual measurement points.
- MDI Meteorological data interface: Define the service times. Meteorological data based on Meteonorm.
- AHU Air-handling unit configurator: Element handling per drag and drop. Approximately measurements, weights, pressure drops, prices.
- EAC Economy of AHU's with circuit connected heat recovery systems. Variable air volume flows, amortization time, capital costs.
- DEH Economy of AHU's with different heat recovery systems. Variable air volume flows, amortization time, capital costs.
- ESH Glycol Re-Cooler with axial fans, outside or in AHU's. Dry, adiabatic and hybrid service, container measurements.
- HEH Calculation of fin coils like heater, cooler,condenser, evaporator, heater split, cooler split.
- CCS Calculation of heat recovery circuit systems with fin coils. Different systems with foreign energy in the circuit.
- Diverse GHH, Mollier diagram for different types of gases and steams. Spiral rib and circle rib heat exchangers.




Mollier diagram / Carrier psychrometric chart (AHH) thematics

- 3 Representation according to Mollier and Carrier
- 4 Process data to the moist air, definition, area, thermodynamic properties
- 5 Thermodynamic properties
- 6 Approximation polynomials for the thermodynamic properties
- 7 Equations for moist air, cooling process
- 8 Humidification (Water, wet steam, saturated steam)
- 9 Meteorological data and a correct cooler design for sweltering midsummer
- 10 AHU1 reduced: Determine air-conditioning units. Drag and drop the elements

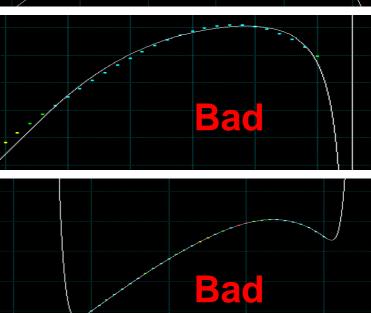
Fin coil heat exchanger (FCHE) thematics

- 11 FCHE measurements, corrugated fins, heat exchanger tubes inside grooved
- 12 FCHE measurements, fin thickness, basic equations
- 13 Average logarithmic temperature difference, counter flow, equal flow, cross flow, cross counter flow
- 14 Cross counter flow n-times, cooling process Δtm, FCHE surface smooth and corrugatet fins
- 15 FCHE surface inside and outside, influence on the heat transfer and pressure drop
- 16 Heat transfer coefficient outside
- 17 Heat transfer coefficient outside, k-coefficient, air cooler surface temperature
- 18 Pressure drop outside on air heater and air cooler sensible
- 19 Pressure drop outside on air heater hybrid and air cooler with condensate formation
- 20 Definition to the tube coupling and to the collectors, pressure drop in the collectors
- 21 Smooth and inside grooved tubes, pressure drop without aggregate state change and inside total
- 22 Heat transfer coefficient inside, agents without and with aggregate state change, condensation
- 23 Heat transfer coefficient inside, dry expansion evaporation, pump recirculation evaporation
- 24 Heat transfer coefficient with inside grooved tubes, pressure drop on the condensation, gradient
- 25 Pressure drop on the dry expansion evaporator, pressure drop in the capillaries
- 26 Pressure drop on the pump recirculation evaporator, CO2 cooler in the supercritical area
- 27 CO2 cooler in the supercritical area
- 28 Combination of gas mixtures (REFPROP from NIST) and condensable vapors
- 29 Combination of gas mixtures and condensable vapors, application GHH
- 30 Combination of gas mixtures and condensable vapors, application HEH-SR-G

Mollier diagram / Carrier psychrometric chart Page 4						
Process data to the moist air	1) Heat recovery - Circu	uit connect-sy	/stem			
Definition The Mollier-hx-diagram represents the air water mixture. It is in	Efficiency temperature Efficiency hygroscopic Efficiency humid Capacity Mean temp.diff. Coefficient	% % KW K kW/K	70.000 0.000 62.759 11.560 5.429			
such a way developed that the 0 °C isotherm is horizontal in the range of unsaturated air. The nebula isotherm of over saturated	Coefficient	KVV/IX	Cold air In	Cold air Out	Hot air In	Hot air Out
air by 0 °C go parallel to the enthalpy. On $t = 0$ °C and $x = 0$ kg/kg the enthalpy $h = 0$ J/kg, which leads to ranges with negative enthalpies. By exchange of the centerlines one receives the Carrier-xh-Diagram (Psychrometric chart) within the software AHH to be alternatively worked can.	Temperature Rel. Humidity Abs. Humidity Density humid Enthalpy humid Volumeflow humid Massflow dry	°C % kg/m³ kJ/kg m³/h kg/h	-12.000 100.000 1.346 1.330 -8.737 7527.666 10000.000	10.400 17.090 1.346 1.225 13.857 8173.325 10000.000	20.000 40.000 5.872 1.182 35.028 8511.363 10000.000	1.771 97.451 4.255 1.261 12.435 7961.565 10000.000
Area Usually the Mollier-hx-Diagram is based on a pressure of 1.013 bar according to sea level and exhibits a range, which permits not	Condensed water Surface temperature	kg/h ℃		0.000	Danger o	16.170 -3.324 of FREEZING!
all applications. The software AHH permits the desired range for each application and supports the good clarity because of each stretching of the axes of coordinates.	2) Heating Capacity	kW	71.780)		
Temperature-100 to 300°CAbsolute humidity0 to 1000 g/kgPressure absolute0.1 to 16 barHeight-5000 to 15000 mThermodynamic properties	Temperature Rel. Humidity Abs. Humidity Density humid Enthalpy humid Volumeflow humid Massflow dry	°C % kg/m³ kJ/kg m³/h kg/h	Air Ir 10.400 17.090 1.346 1.225 13.857 8173.325 10000.000) 3) ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;	ir Out 6.000 3.641 1.346 1.124 9.697 1.214 0.000	
In specialized books one usually finds the specific temperature-	3) Moistening of air with	water				
referred thermal capacity. This value points out, how much energy must be spent, in order to warm up the medium with appropriate temperature around 1°C. If one wants to know, which energy is needed, in order the medium of t_1 to t_2 to warm up, the	Capacity Moistening flow Moistening temperature Moistening enthalpy	kW kg/h °C kJ/kg	0.952 55.020 15.000 62.302)		
means of the specific temperature-referred thermal capacity must be determined. Below the average values were formed of 0 °C to			Air Ir	n A	ir Out	
t °C and combined into tables and approximation polynomials, which make a fast processing possible on computers.	Temperature Rel. Humidity Abs. Humidity Density humid Enthalpy humid Volumeflow humid Massflow dry	°C % kg/m³ kJ/kg m³/h kg/h	36.000 3.641 1.346 1.124 39.697 8911.151 10000.000	4 7 4 859	2.488 0.000 6.848 1.171 0.040 6.927 0.000	

Mollier dia	gram / C	arrier p	sychro	metric c	hart	Symbol	Unit	Description	Page 5
Thermodyr	namic pr	opertie	S			cp _d	J/kgK	Heat capacity from water vapor on Solid	lus
t cp _l	cp_d	p_d	h_w	h_d	r	cp_l	J/kgK	Heat capacity from dry air	
-100 1007.20 -90 1006.90	1815.40 1817.50	0.00160				h_d	J/kgK	Enthalpy from water vapor on Solidus	
-80 1006.63 -70 1006.40	1819.60 1821.70	0.05333 0.258				h_w	J/kgK	Enthalpy from water vapor on Liquidus	
-60 1006.20 -50 1006.07 -40 1006.00	1823.80 1826.00 1828.10	1.076 3.939 12.870				p_d	Pa	Partial pressure from water vapor	
-30 1005.97 -20 1006.00	1830.30 1832.50	38.101 103.450				r	J/kgK	Evaporation heat from water vapor	
-10 1006.08 0 1006.18 10 1006.31	1834.70 1836.90 1839.10	259.980 610.480 1230	0 42000	2500500 2518900	2500500 2476900	t	°C	Temperature	
20 1006.45 30 1006.60 40 1006.81 50 1007.03 60 1007.30 70 1007.60 80 1007.90 90 1008.30 100 1008.70 110 1009.00 120 1009.50 130 1009.90 140 101.30 150 1011.80 160 1011.30 170 1011.80 180 1012.40 190 1013.00 200 1013.60 210 1014.80 230 1015.50 240 1016.20 250 1016.90 260 1017.60 270 1018.40 280 1019.20 290 1020.10 300 1021.00	1841.40 1843.70 1846.00 1848.30 1850.60 1852.90 1855.30 1857.70 1860.10 1862.50 1864.90 1867.30 1867.30 1874.80 1877.30 1874.80 1877.30 1874.80 1887.50 1890.10 1892.70 1895.30 1895.30 1990.60 1903.30 1906.00 1908.70	2340 4240 7370 12300 31100 47300 70100 101300 143300 198500 270100 361400 476000 618000 792000 1002700 1255200 1555100 1908000 2320100 2320100 23978000 4694000 5505000 6419000 7445000 8592000	83900 125600 167300 250900 292800 334700 376800 418900 461100 503500 546100 588900 631900 675200 718800 762700 807000 851800 897100 943000 989600 1036900 1036900 1035100 1134300 1134300 1289300 1344200	2537300 2555500 2573500 2608800 2625900 2642500 2642500 2674400 2689600 2704200 2718300 2731800 27456500 2767600 2756500 2767600 2777600 2786300 2793700 2799400 2805400 2802500 2797400 2802500 2797400 2789500 2778700 2789500 2778700 2764900 2748000	2453400 2429900 2429900 2382200 2357900 2333100 2255500 2228500 2200700 2172200 2142900 2112600 2048800 2014900 1979300 1941900 1902300 1860400 1815800 1717400 1663100 1663100 1542600 1475600 1403800	$cp = \frac{\int_{t_1}^{t_2}}{t_2}$ $t_1 = 0 \text{ and}$ Richard M 1863 - 1	$dt_2 = t \rightarrow$ Mollier	$cp = \frac{\int_0^t cp_t di}{t}$ W. H. Carrier 1876 - 1950 O°C Metric	Stable, aturated umid air 100% on stable, ta stable, saturated numid air

Mollier diagram / Carrier psychrometric chart


Approximation polynomials (-100 < t < 300°C)

$$\begin{array}{ll} a = 1.0061702411316te-03 \\ b = -5.14584155927084te-04 \\ c = 5.0744861271335te-01 \\ d = -4.088393845148te-03 \\ e = -3.948021385156181e-03 \\ f = 3.8699025155577E+03 \\ b = 2.96850247760703te-04 \\ c = -7.68576185706328te-01 \\ d = -8.2365125618347te-08 \\ c = -1.03764255356861te-03 \\ f = -2.044276293842532e-0 \\ c = -3.31391504282494te-02 \\ c = -3.31391504282494te-03 \\ c = -7.9070600224934te-04 \\ f = 3.14229016152800te-09 \\ r = -7.9070600224934te-04 \\ r = -7.9070600224934te-04 \\ r = -8.003171231269te-07 \\ c = -8.003171231269te-07 \\ c = -8.003171231269te-07 \\ c = -8.00397064616466te-00 \\ f = 9.6623360384174te-10 \\ a = 2.504999702419050te-06 \\ b = -1.09049997241905te-06 \\ c = -2.0943478212850te-07 \\ c = -3.00397064616466te-00 \\ f = 9.6623360384174te-10 \\ a = 2.50049970241960te-06 \\ b = -1.09049997241960te-06 \\ c = -2.094298248609te-07 \\ c = -3.00949997241960te-06 \\ c = -2.094298248609te-07 \\ c = -2.097066641666te-00 \\ f = 9.6623360384174te-10 \\ a = 2.50049997241965te-03 \\ c = -2.097066641666te-00 \\ f = -1.09049997241960te-06 \\ c = -2.097066641666te-00 \\ f = -2.094298248609te-02 \\ c = -2.04218810118526te-07 \\ c = -2.097066641666te-00 \\ f = -2.094298248609te-02 \\ c = -2.042188101182520te-07 \\ c = -2.04218810118250te-07 \\ c = -2.04218765012501te-01 \\ r = -1.21798080999374te-04 \\ r = h_d - h_$$

The application TableCurve 2D offers more than 7000 equations, sorted according to the smallest error rate. However, not all equations are suitable to the same extent, but 3 criteria must be observed:

- 1. The waves within the data should be minimal.
- 2. Within the data, singularities are to be excluded.
- 3. The trend outside of the data should be continuous.

Page 6

Mollier Diagramm / Carrier Psychrometric Chart	Symbol	Unit	Description Page 7
Equations for moist air	Н	m	Height over sea level
The air pressure depends on the height over sea level, the temperature and the	h _{lf}	J/kg	Enthalpy from the moist air
numidity. As basis for Mollier diagram and Carrier chart the air pressure is to determine by the height over sea level, the middle yearly temperature (average	M _l	kg/kMol	Molecular weight from air = 28.96 kg/kMol
10°C for middle Europe) and the middle yearly humidity (average 80% for niddle Europe).	\dot{M}_{lt}	kg/s	Massflow from the dry air
M = H + r	M _w	kg/kMol	Molecular weight from water = 18.02 kg/kMol
$T_{lf} = t_{lf} + 273.16$ $z = \frac{M_l g H}{RT_{lf}} \frac{1+x}{1+x \frac{M_l}{M}} \rightarrow p_{lf} = 1.01325 e^{-z}$	p_{lf}	Ра	Pressure from the moist air
$J = 1 + x \frac{M_w}{M_w}$	$arphi_{lf}$	kg/m3	Relative humidity from the moist air
$\rho_{lf} = \frac{M_l p_{lf}}{RT_{lf}} \frac{1+x}{1+x\frac{M_l}{M}} \qquad x_s = \frac{M_w}{M_l} \frac{p_d}{p_{lf} - p_d} x = \frac{M_w}{M_l} \frac{\varphi_{lf} p_d}{p_{lf} - \varphi_{lf} p_d}$	\dot{Q}_{lf}	W	Capacity with moist air
¹ ⁴ ¹ W	R	J/kMolK	Universal gas constant = 8314.41 J/kMolK
$\varphi_{lf} = \frac{p_{lf} x \frac{M_l}{M_w}}{p_d \left(1 + x \frac{M_l}{M_w}\right)} h_{lf} = cp_l t + x(r_0 + cp_d t) \qquad \dot{Q}_{lf} = \dot{M}_{lt} \Delta h_{lf}$		J/kg	Evaporation heat from water vapor = 2500500 J/kg
$\varphi_{lf} = \frac{M_{l}}{p_d \left(1 + x \frac{M_l}{M_{ul}}\right)} h_{lf} = cp_l t + x(r_0 + cp_d t) Q_{lf} = M_{lt} \Delta h_{lf}$	$ ho_{lf}$	kg/m3	Density from the moist air
$t_{lf} = \frac{h_{lf} - xr_0}{cn_l + xcn_d} \qquad \dot{M}_{lt} = \frac{\dot{V}_{lf}\rho_{lf}}{1 + x} \qquad \dot{V}_{lf} = \frac{\dot{M}_{lt}(1 + x)}{\rho_{lf}}$	t_{lf}	°C	Temperature from the moist air
$t_{lf} = \frac{1}{cp_l + xcp_d}$ $M_{lt} = \frac{1}{1+x}$ $V_{lf} = \frac{1}{\rho_{lf}}$	T_{lf}	К	Temperature from the moist air
Cooling process	\dot{V}_{lf}	m3/s	Volume flow from the moist air
	x	kg/kg	Absolute humidity from the moist air
tw _x	x _s	kg/kg	Maximally absolute humidity from the moist air

tr

tk_x

1.0

tr₊

tr₁ tk₁ In the software the cooling process in the heat exchanger is divided in 15 cells in air direction. Here, it is assumed that a high degree of cross-counter-flow. The surface temperature trx plays in each cell a crucial role. When this is less than the dew point ttx, condensate forms. For small ttx-trx, the droplets of condensate are small too. These can be separated in a 1st demister only, which produce bigger droplets. A 2nd demister can separate this big droplets. Demisters with less than 100 Pa pressure drop have a bad separation. This play the big rule, when the dehumidification during the cooling process is important.

Mollier Diagramm / Carrier Psychrometric Chart	Symbol	Unit	Description Page 8
Humidification (Water, wet steam, saturated steam)	a _d		Wet part of steam
The humidification direction is carried out in the Mollier diagram on paper with the aid of the edge measuring rod. This is not possible in the software	Δh	J/kg	Enthalpy difference
AHH because the two axes can be freely selected.	Δx	kg/kg	Humidity difference
$h_{b(Wasser)} = h_{w}$ $h_{b(Nassdampf)} = h_{w} + a_{d}r$ $h_{b(Sattdampf)} = h_{d}$	h _a	J/kg	Enthalpy outlet
\dot{M}_b \dot{M}_b \dot{M}_b Δh	h_b	J/kg	Humidification enthalpy
$\Delta h = h_a - h_e = \Delta x h_b = h_b \frac{M_b}{\dot{M}_l} \qquad \Delta x = x_a - x_e = \frac{M_b}{\dot{M}_l} = \frac{\Delta h}{h_b}$	h_e	J/kg	Enthalpy inlet
$\dot{M}_b = \Delta x \dot{M}_l \qquad \dot{Q} = \Delta h \dot{M}_i$	\dot{M}_b	kg/s	Humidification mass flow
Examples to the Mollier diagram on the right	x _a	kg/kg	Humidity outlet
Humidification with water of 0°C	x _e	kg/kg	Humidity inlet
$h_b = h_w = 0 J/kg$	ture		Water
Humidification with water of 50°C	femperatur 0 g/kg	2 g/kg 4 g/kg	6 g/kg 8 g/kg 12 g/kg 14 g/kg 18 g/kg 20 g/kg
$h_b = h_w = 209'100 J/kg$		5%	10% 15% 20% 30% 40%
Humidification with wet steam of 110°C, wet part of steam 50 %	40 °		50%
$h_b = h_w + a_d r = 461'100 + 0.5 \cdot 2'228'500 = 1'575'350 J/kg$	35 °		60%
Humidification with saturated vapor of 150°C		kg/m3	4 70%
	-+++		80%

30 °

25 °

20 °

Humidification with water from 0 °C
 Humidification with water from 50 °C
 Humidification with wet steam 110 % / 50 %

Air on inlet 10 kg/s / 30 °C / 40 % / 2 g/kg abs. humidity Air on outlet 7 g/kg abs. humidity

4) Humidification with saturated steam from 150 °C

6

90%

100%

Entralipt

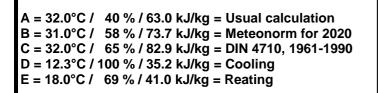
Rel. Humidity

Air pressure 1.01325 bar

3

2

$$h_b = h_d = 2'744'500 J/kg$$


Note that moistening with constant enthalpy can only be achieved with water of 0° C. During humidification with water > 0° C the enthalpy increases, albeit little.

If the desired relative humidity at the outlet is desired as an input value, this must be done by means of iteration, which is the case in the software.

Mollier diagram / Carrier psychrometric chart

Meteorological data and a correct cooler design for sweltering midsummer

The German standard DIN 4710 recorded 87'600 events à 0.1 hours per year as average values of the period from 1961 to 1990 and therefore forms a large area in the Mollier diagram. The software from Meteonorm recorded 8'760 events à 1.0 hours, and therefore forms a smaller area in the Mollier diagram than the German standard DIN 4710 what is a risk in the design of coolers in sweltering midsummer.

A - D: Big risk management

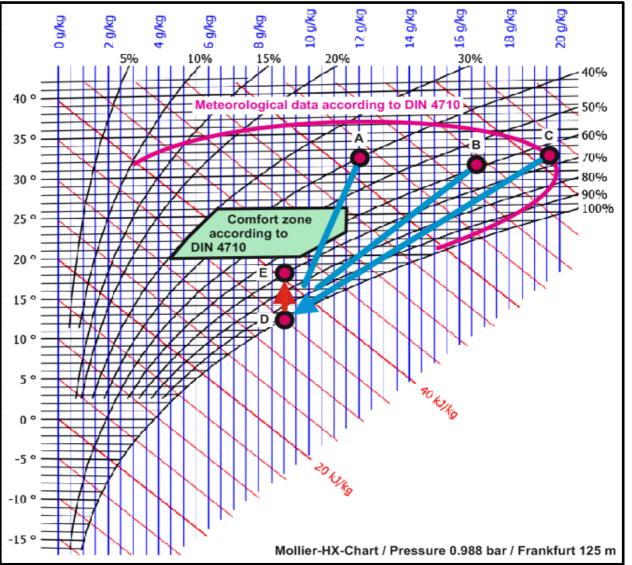
63.0 - 35.2 = 27.8 kJ/kg = 58.28 %

Cooler size loss = 41.72 %

B - D: Middle risk management

73.7 - 35.2 = 38.5 kJ/kg = 80.71 %

Cooler size loss = 19.29 %


C - D: No risk management

82.9 - 35.2 = 47.7 kJ/kg = 100.00 %

Correct cooler size

Summary

The correct cooler calculation does not depend on the highest summer temperature but on the highest enthalpy in the summer.

Page 9

Mollier diagram / Carrier psychrometric chart

Page 10

ام ام <u>د ا</u> . . AHU: Determine air-conditioning units. Dra

The neutral configurator for air-handling units shows standard values for the weight, the dimensions, the pressure drop and the price of each component of 2 air-handling units.

Regarding internal usable width and height, the configurator it based on standard filter dimensions of 610 x 610 mm or divisible units.

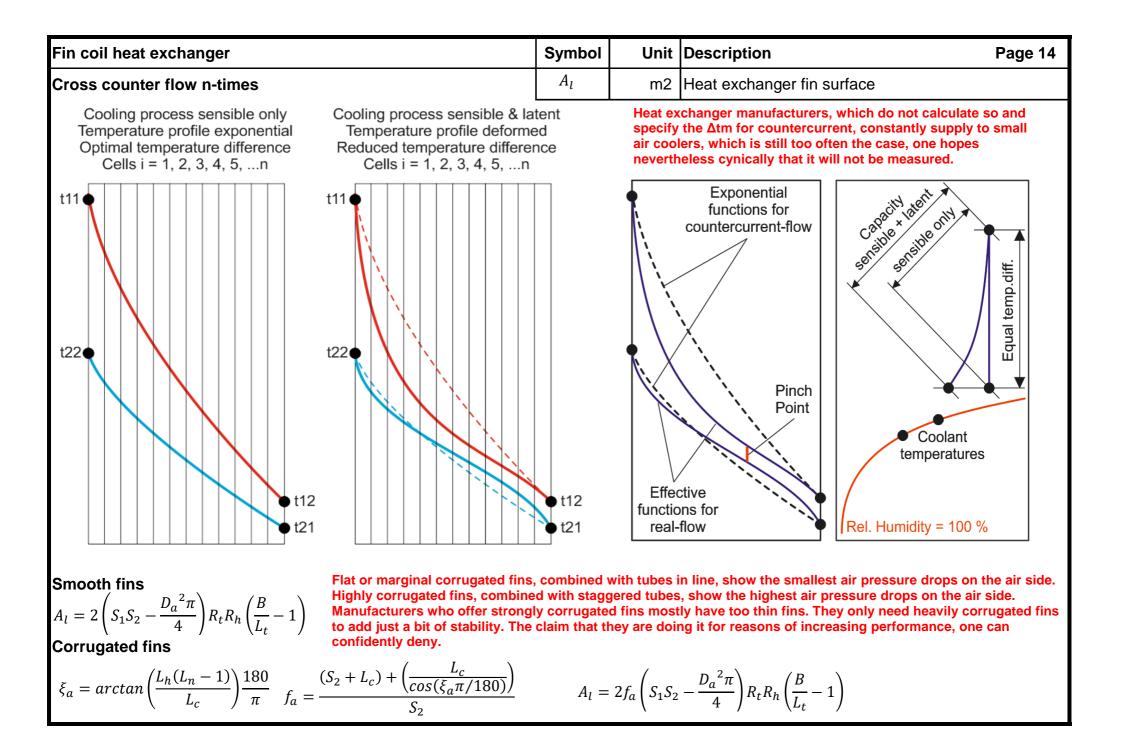
The individual components you do not must calculate thermodynamically. The values based on average default values.

After entering the air quantity and the maximum permissible speeds, based on the air filter we offer a variety of dimensions.

You can select by drag and drop, the individual components and enter the external pressure drops.

As a result, all relevant data is obtain for the two air-handling units and this at a time expenditure of just a few minutes.

∧ HR
▲ Heat exchanger
+ + + + 000 — — —
∧ Humidifier
토토취취


w Dw D

5. Di	ag and drop the elements				
e 2 s of	FOL AULOA AULOA		G } 1101	3	ABL RA ZUL SA
	Air-Handling Up Outside air (Filter 1.87)	Length mm	Weight ka	Pressure drop Pa	Price EUR
•				100.00	Lon
	Empty Filter Filte CC F B B B B B B B B B B B B B B B B B	350.00 450.00 650.00 350.00 1300.00 400.00 150.00 200.00 1300.00 2200.00 1300.00 350.00	$100.00 \\ 140.00 \\ 210.00 \\ 590.00 \\ 80.00 \\ 300.00 \\ 320.00 \\ 70.00 \\ 200.00 \\ 300.00 \\ 300.00 \\ 300.00 \\ 100$	27.00 109.00 144.00 87.00 18.00 88.00 63.00 88.00 23.00 53.00 88.00 53.00 27.00	$\begin{array}{c} 2180.00\\ 2290.00\\ 3390.00\\ 9250.00\\ 1160.00\\ 5560.00\\ 5280.00\\ 1500.00\\ 3270.00\\ 5560.00\\ 12900.00\\ 5560.00\\ 2180.00\end{array}$
	Supply air			300.00	
	Total	9650.00	3490.00	1268.00	60080.00
	Air-Handling Unit (H x W = 1960 x 2570 mm) Return air (28000 m³/h - Filter 1.74)	Length mm	Weight kg	Pressure drop Pa	Price EUR
	Return air			150.00	
	Empty part little with flaps Filter G Filter F Sound absorber Fan - Efficiency 75.00 % - Capacity 9.75 kW Sound absorber Empty part big with flaps Humidifier water CC-System Droplet separator Empty part little with flaps	350.00 450.00 650.00 1300.00 2200.00 1300.00 350.00 1300.00 650.00 150.00 350.00	$100.00 \\ 140.00 \\ 210.00 \\ 300.00 \\ 780.00 \\ 300.00 \\ 80.00 \\ 300.00 \\ 590.00 \\ 70.00 \\ 100.00$	23.00 95.00 126.00 46.00 76.00 46.00 16.00 76.00 87.00 76.00 23.00	$\begin{array}{c} 2180.00\\ 2290.00\\ 3390.00\\ 5560.00\\ 12900.00\\ 5560.00\\ 1160.00\\ 5560.00\\ 9250.00\\ 1500.00\\ 2180.00\end{array}$
	Exhaust air	0050.00	2070.00	100.00	51533.00
	Total	9050.00	2970.00	940.00	51530.00

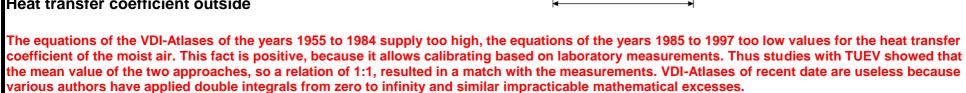
Fin coil heat exchanger		Symbol	Unit	Description	Page 11
	B	α	0	Inside grooved tubes twist angle	
		В	m	Fin package width	
0000		β	0	Inside grooved tubes flank angle	
0000 in line		Da	m	Heat exchanger tubes outside diameter	
		Di	m	Heat exchanger tubes inside diameter	
Air direction		Dr	m	Heat exchanger tubes grooves diameter	
× No		df	m	Grooves thickness at the foot	
staggered		dm	m	Grooves thickness average	
		ds	m	Grooves thickness on the head	
		н	m	Fin package height	
		h	m	Grooves height	
	Ld	Lc	m	Fin corrugation depth per tube row	
		Ld	m	Fin thickness	
Corrugated fins	Heat exchanger tubes	Lh	m	Fin corrugation height	
	inside grooved	Ln	m	Number of fin creases per tube row	
Air direction		Lt	m	Fin spacing	
Ln		n		Number of grooves	
		S	m	Heat exchanger tubes thickness	
		S1	m	Heat exchanger tubes interval on the heigh	ıt
	\$ 5 5	S2	m	Heat exchanger tubes on the depth	
s2 →	4 http	Т	m	Fin package depth	

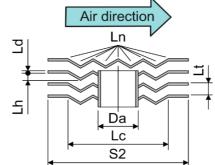
12345n=Rt	Symbol	Unit	Description Page 12
	A _a	m2	Heat exchanger surface outside
	A_i	m2	Heat exchanger surface inside
	\propto_a	W/m2K	Heat transfer coefficient outside
Air direction	\propto_i	W/m2K	Heat transfer coefficient inside
	Δh_{lf}	J/kg	Enthalpy difference of the moist air
	Δh_m	J/kg	Enthalpy diff. from the heating or cooling agent
	Δt_m	К	Average logarithmic temperature difference
	δ_w	m	Heat exchanger tubes thickness
\rightarrow S2 \rightarrow Lt \rightarrow Ld	η_{BPL}		Bypass efficiency between the fins
	η_{KRL}		Contact efficiency tube / fins
$\eta_{KRL} = 1.00 \ for \ fin \ thickness \ge 0.20 \ mm$	η_{WRL}		Heat transfers efficiency tube / fins
η_{KRL} = .95 or fin thickness \geq 0.18 and $<$ 0.20 mm	η_{WTT}		Heat exchanger efficiency total
$\eta_{KRL} = 0.90 \ for \ fin \ thickness \ge 0.16 \ and < 0.18 \ mm$	fa	m2K/W	Fouling factor outside
$\eta_{KRL} = 0.85$ for fin thickness ≥ 0.14 and < 0.16 mm	f_i	m2K/W	Fouling factor inside
$\eta_{KRL} = 0.80 ~for~fin~thickness \ge 0.12~and < 0.14~mm$	k _a	W/m2K	K-coefficient concerning the outside surface
$\eta_{KRL} = 0.75$ for fin thickness ≥ 0.10 and < 0.12 mm	λ_w	W/mK	Heat exchanger tubes thermal conductivity
$p = 4R[(L_t - L_d)D_a\pi + 2L_dS_1S_2]/(L_tS_1S_2) \qquad q = 1 - e^{-p}$	М	kg/s	Mass flow from the heating or cooling agent
$\eta_{BPL} = q^{0.25}$ $r = L_d \lambda_l / (A_a / A_i)$ $s = 1 - e^{-r}$ $\eta_{WRL} = s^{0.25}$	Мit	kg/s	Mass flow from the dry air
$\eta_{WTT} = \eta_{KRL} \eta_{BPL} \eta_{WRL}$ $\dot{Q} = \dot{M}_{lt} \Delta h_{lf}$ $\dot{Q} = \dot{M} \Delta h_m$	Ż	W	Capacity
$\dot{Q} = k_a A_a \Delta t_m$ $\frac{1}{k_a} = \frac{1}{\alpha_a} + f_a + \frac{A_a}{A_i} \frac{\delta_w}{\lambda_w} + \frac{A_a}{A_i} \frac{1}{\alpha_i} + \frac{A_a}{A_i} f_i$	R_h	Piece	Number of tube rows on the height
$Q = \kappa_a A_a \Delta \iota_m \qquad k_a = \alpha_a + J_a + A_i \lambda_w + A_i \alpha_i + \overline{A_i} J_i$	R_t	Piece	Number of tube rows on the depth

Fin coil heat exchanger	Symbol	Unit	Description	Page 13
Average logarithmic temperature difference	<i>t</i> ₁₁	°C	Inlet temperature hot agent	
Counter flow	<i>t</i> ₁₂	°C	Outlet temperature hot agent	
$\Delta t_1 = t_{11} - t_{22} \qquad \Delta t_2 = t_{12} - t_{21} \qquad \Delta t_1 = \Delta t_2 \rightarrow \Delta t_m = \Delta t_1$	<i>t</i> ₂₁	°C	Inlet temperature cold agent	
$\Delta t_1 \neq \Delta t_2 \rightarrow \Delta t_m = (\Delta t_1 - \Delta t_2) / ln(\Delta t_1 / \Delta t_2)$	t ₂₂	°C	Outlet temperature cold agent	
Equal flow	n	Piece	Number of counter flow packages	
$\Delta t_1 = t_{11} - t_{21} \qquad \Delta t_2 = t_{12} - t_{22} \qquad \Delta t_1 = \Delta t_2 \rightarrow \Delta t_m = \Delta t_1$	i		Cell number	
$\Delta t_1 \neq \Delta t_2 \rightarrow \Delta t_m = (\Delta t_1 - \Delta t_2) / ln(\Delta t_1 / \Delta t_2)$			Equal	
Cross flow	+		Cross flow 1-time	
$\mathbf{p} = (t_{11} - t_{12})/(t_{11} - t_{21}) \qquad \mathbf{q} = (t_{22} - t_{21})/(t_{11} - t_{21})$	+		Cross counter flow 2-times	
			Cross counter flow 3-times	
Cross flow 1-time			Cross counter flow 4-times	
r = 1 - (q/p)ln(1/(1-p)) $s = q/ln(1/r)$			Cross counter flow 5-times	
$\Delta t_m = s(t_{11} - t_{21})$			Cross counter flow 6-times	
Cross counter flow 2-times			Cross counter flow 7-times	
$p = q \rightarrow x = 1 - p/(2(p-1))$			Cross counter flow 8-times	
	↓		Cross counter flow 9-times	
$p \neq q \rightarrow x = \frac{\sqrt{(1-q)/(1-p)} - q/p}{1-q/p}$			Cross counter flow 10-times	
p + q + x = 1 - q/p	↓		Cross counter flow 11-times	
$r = 1 - (q/p)lnx$ $s = q/(2ln(1/r))$ $\Delta t_m = s(t_{11} - t_{21})$	↓		Cross counter flow 12-times	
			Cross counter flow 13-times	
n			Cross counter flow 14-times	
$\Delta t_m = \dot{Q} / \sum_{i=1}^{\infty} k_{a(i)} A_{a(i)}$	4	-	Counter flow	

Fin coil heat exchanger	Symbol	Unit	Description	Page 15
Heat exchanger surface outside	A _r	m2	Heat exchanger surface tubes outside	
$A_{a} = D_{a}\pi(L_{t} - L_{d})R_{t}R_{h}\left(\frac{B}{L_{t}} - 1\right) \qquad A_{a} = A_{r} + A_{l}$	f_h		Factor for the heat transfer	
$A_r - D_a n (L_t - L_d) K_t K_h \left(\frac{1}{L_t} - 1 \right) \qquad A_a = A_r + A_l$	f_{dp}		Factor for the pressure drop	
Heat exchanger surface inside with smooth tubes				
$A_i = D_i \pi B R_t R_h$				
Heat exchanger surface inside with grooved tubes				
$d_m = \frac{(D_i + D_r)\pi}{1 + 1} \qquad A_{r1} = n \left[\left(\frac{2h}{1 + 1} \right) + \left(d_m - htan \left(\frac{\beta \pi}{1 + 1} \right) \right) \right]$	4			

$$d_{m} = \frac{1}{4n} \qquad A_{r1} = n \left[\left(\frac{\beta \pi}{\cos\left(\frac{\beta \pi}{360}\right)} \right) + \left(d_{m} - h \tan\left(\frac{\gamma}{360}\right) \right) \right]$$
$$A_{r2} = A_{r1} + \left[n \left(d_{m} \left(h \tan\left(\frac{\beta \pi}{360}\right) \right) \right) \right] \qquad A_{i} = A_{r2} B R_{t} R_{h}$$


Corrugated fins

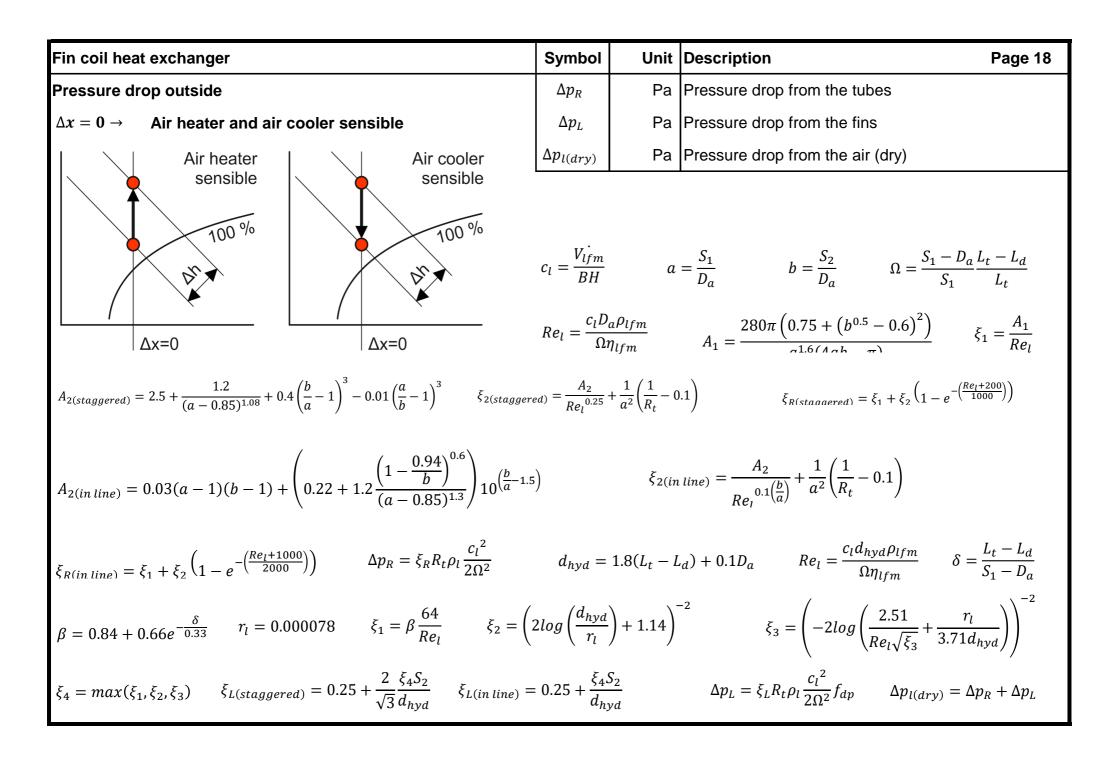

Influence on the heat transfer and the pressure drop

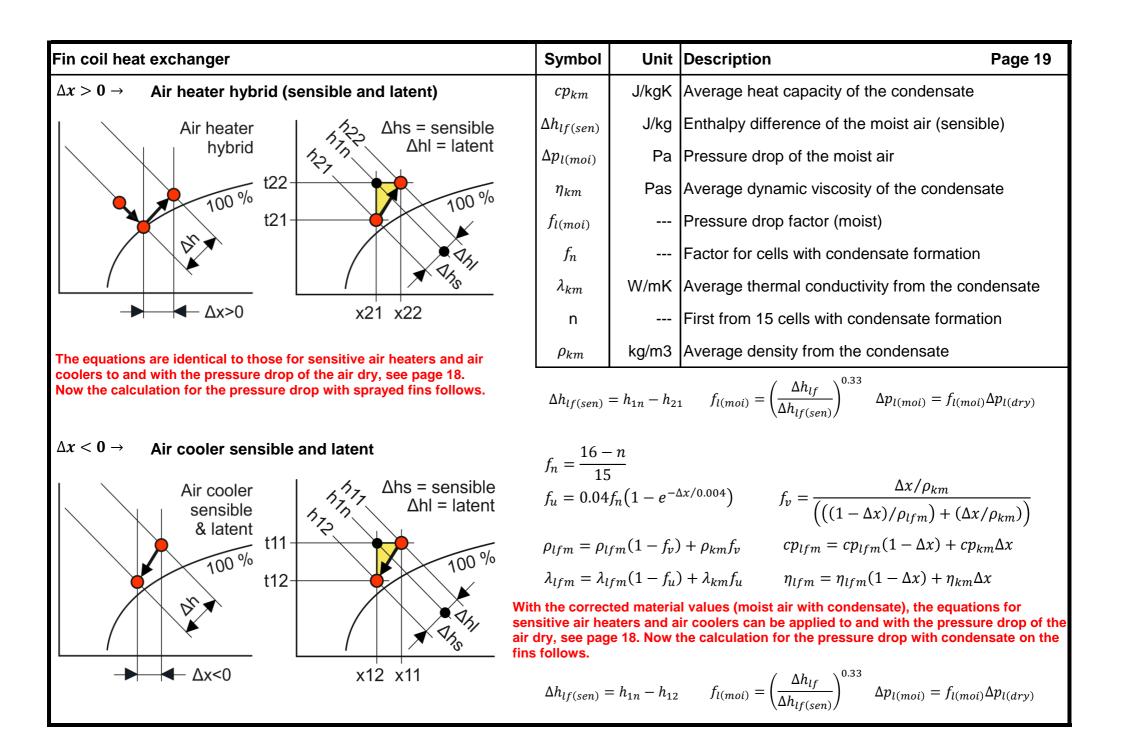
$$f_x = 1 + sin\left(\frac{L_n\pi}{180}\right) + 0.2\left(sin\left(\frac{L_n\pi}{180}\right)\right)^2 \quad f_y = (L_n + 1)^{0.05}$$

$$f_b = f_x f_y$$
 $f_e = \frac{L_h}{L_t - L_d}$ $f_h = f_b^{f_e}$ $f_{dp} = f_h^{L_h}$

Heat transfer coefficient outside

Fin coil heat exchanger	Symbol	Unit	Description Page 16			
Heat transfer coefficient outside (VDI 1955 to 1984)	C _l	m/s	Average velocity of the moist air			
$a = \frac{S_1}{D_a} b = \frac{S_2}{D_a} \psi = \left(1 - \frac{\pi}{4a}\right) \frac{L_t - L_d}{L_t} f_{a(staggered)} = 1 + \frac{2}{3b}$		J/kgK	Average heat capacity of the moist air			
$a = D_a$ $b = D_a$ $\phi = (1 4a) L_t$ $Ja(staggerea) = 1 + 3b$	Δt_{lf}	K	Temperature difference of the moist air			
$0.7\left(\frac{b}{a} - 0.3\right)$ $1 + f_a(R_t - 1)$	η_{lfm}	Pas	Average dynamic viskosity of the moist air			
$f_{a(inline)} = 1 + \frac{0.7\left(\frac{b}{a} - 0.3\right)}{\psi^{1.5}\left(\frac{b}{a} + 0.7\right)^2} \qquad f_k = \frac{1 + f_a(R_t - 1)}{R_t}$	λ_l	W/mK	Thermal conductivity of the fins			
(u)	λ_{lfm}	W/mK	Average thermal conductivity of the moist air			
$l_{hyd} = \frac{D_a \pi}{2}$ $V_{lfm} = \frac{M_{lt}(1 + x_{lfm})}{\rho_{lfm}}$ $c_l = \frac{V_{lfm}}{BH}$	$ ho_{lfm}$	kg/m3	Average density of the moist air			
$Re_{l} = \frac{c_{l}l_{hyd}\rho_{lfm}}{\mu m_{fm}} \qquad cp_{lfm} = \frac{\Delta h_{lf}}{\Delta t_{lf}} \qquad Pr_{l} = \frac{\eta_{lfm}cp_{lfm}}{\lambda_{lf}}$	V_{lfm}	m3/s	Average volume flow of the moist air			
$Re_l = \frac{1}{\psi \eta_{lfm}}$ $Cp_{lfm} = \frac{1}{\Delta t_{lf}}$ $Pr_l = \frac{1}{\lambda_{lfm}}$	x _{lfm}	kg/kg	Average absolute humidity of the most air			
$Nu_{1} = 0.644Re_{l}^{0.5}Pr_{l}^{1/3} \qquad Nu_{2} = \frac{0.037Re_{l}^{0.8}Pr_{l}}{1 + 2.443Re_{l}^{-0.1}(Pr_{l}^{2/3} - 1)} \qquad Nu_{3} = 0.3 + \sqrt{Nu_{1}^{2} + Nu_{2}^{2}} \qquad Nu_{l} = f_{k}Nu_{3} \qquad \alpha_{l} = \frac{f_{h}Nu_{l}\lambda_{lfm}}{l_{hyd}}$						
$\rho_{me} = 1.28 \frac{S_2}{D_a} \sqrt{\frac{S_1}{S_2} - 0.2} \qquad h_{me} = \frac{D_a}{2} (\rho_{me} - 1)(1 + 0.35 ln \rho_{me}) \qquad X = h_{me} \sqrt{\frac{2\alpha_l}{\lambda_l L_d}} \qquad \qquad \vartheta = \frac{TanhX}{X} \eta_{KRL} \qquad \eta_l = 1 - \frac{A_l}{A_a} (1 - \vartheta) \qquad \alpha_{a(old)} = \eta_l \alpha_l$						
Heat transfer coefficient outside (VDI 1985 to 1997)			<i>n m</i>			
$a = \frac{S_1}{D_a}$ $b = \frac{S_2}{D_a}$ $\psi = \frac{S_1 L_t}{(S_1 - D_a)(L_t - L_d)}$ $c_l = \frac{\psi V_{lfm}}{BH}$	$a = \frac{S_1}{D_a} \qquad b = \frac{S_2}{D_a} \qquad \psi = \frac{S_1 L_t}{(S_1 - D_a)(L_t - L_d)} \qquad c_l = \frac{\psi V_{lfm}}{BH} \qquad \qquad Re_l = \frac{c_l D_a \rho_{lfm}}{\eta_{lfm}} \qquad \qquad Pr_l = \frac{\eta_{lfm} c p_{lfm}}{\lambda_{lfm}}$					
$\vartheta = \frac{2\left((S_1 S_2) - (D_a^2 \pi/4)\right) + (D_a \pi (L_t - L_d))}{D_a \pi L_t} \qquad R_t \le 3 \to f_{a(in \ line)} = 0.2 \qquad R_t > 3 \to f_{a(in \ line)} = 0.22$						
$R_t \le 2 \rightarrow f_{a(staggered)} = 0.33 \qquad R_t = 3 \rightarrow f_{a(staggered)} = 0.36 \qquad R_t > 3 \rightarrow f_{a(staggered)} = 0.38 \qquad Nu_l = f_a Re_l^{0.6} \vartheta^{-0.15} Pr_l^{(1/3)}$						
$\alpha_l = \frac{f_h N u_l \lambda_{lfm}}{D_a} \qquad l_r = \sqrt{\left(\frac{S_1}{2}\right)^2 + S_2^2} S_2 < \frac{S_1}{2} \to \rho_{me(staggered)} = 1.$	$27\frac{2S_2}{D_a}\sqrt{\frac{l_r}{2S}}$	$\frac{1}{2}$ - 0.3	$S_2 \ge \frac{S_1}{2} \rightarrow \rho_{me(staggered)} = 1.27 \frac{S_1}{D_a} \sqrt{\frac{l_r}{S_1} - 0.3}$			


Fin coil heat exchanger	Symbol	Unit	Description Page 17
$S_1 < S_2 \rightarrow \rho_{me(inline)} = 1.28 \frac{S_1}{D_a} \sqrt{\frac{S_2}{S_1} - 0.2}$	$f_{w(old)}$		Factor for the heat transfer coefficient VDI old
$S_1 < S_2 \rightarrow \rho_{me(inline)} - 1.28 \overline{D_a} \sqrt{S_1} - 0.2$	$f_{w(new)}$		Factor for the heat transfer coefficient VDI new
$S_1 \ge S_2 \to \rho_{me(in\ line)} = 1.28 \frac{S_2}{D_a} \sqrt{\frac{S_1}{S_2} - 0.2}$	k_g		Factor for the surface temperature
·	t _l	°C	Temperature of the moist air
$h_{me} = \frac{D_a}{2} (\rho_{me} - 1)(1 + 0.35 ln \rho_{me}) \qquad X = h_{me} \sqrt{\frac{2\alpha_l}{\lambda_l L_d}}$	t_m	°C	Temperature of the coolant agent
$\vartheta = \frac{TanhX}{X}\eta_{KRL} \qquad \eta_l = 1 - \frac{A_l}{A_a}(1 - \vartheta) \qquad \alpha_{a(new)} = \eta_l \alpha_l$	to	°C	Average surface temperature outside
Heat transfer coefficient outside on average $\alpha_a = \frac{f_{w(old)} \propto_{a(old)} + f_{w(new)} \propto_{a(new)}}{f_{w(old)} + f_{w(new)}}$			Gtot
-coefficient concerning the outside surface		Ter	mperature profile
$G_{wa} = \frac{1}{\alpha_a} G_{fa} = f_a G_{ww} = \frac{A_a}{A_i} \frac{\delta_w}{\lambda_w} \qquad G_{wi} = \frac{A_a}{A_i} \frac{1}{a_i} \qquad G_{fi} = \frac{A_a}{A_i} f_i$			uling inside nd outside
$G_{tot} = G_{wa} + G_{fa} + G_{ww} + G_{wi} + G_{fi}$ $k_a = \frac{1}{G_{tot}}$			Air outside Mail Mail Mail
Air cooler surface temperature of the moist air			kg Air outside
$\eta_{WTT} = 1.00 \rightarrow k_g = \frac{G_{tot} - G_{wa}}{G_{tot}} \qquad \eta_{WTT} < 1.00 \rightarrow m = \eta_{WTT}^{-4} \rightarrow k_g = \left(\frac{G_{tot}}{M_{tot}}\right)^{-1} + \frac{1}{M_{tot}} + \frac{1}{M_{tot}}$	$\left(\frac{t-G_{wa}}{G_{tot}}\right)^m$	Co	oling agent


 $t_o = t_m + k_g(t_l - t_m)$

The poorer the total heat exchanger efficiency is the higher is the surface temperature of the air. This is true for much too thin fins with poor contact to the tubes, for a few tubes in the depth and for large fins distribution due to the bypass effect. Such air coolers have too little latent power and can therefore hardly form condensate.

temperature

 $\downarrow \downarrow$

Fin coil heat exchanger	Symbol	Unit	Description Page 20
Definition to the tube coupling and to the collectors	C _{km}	m/s	Agent velocity inside of the collector
Example	cp_m	J/kgK	Agent heat capacity
Number of circuits (NC) = 8	D_{ki}	m	Collector inside diameter
Number of passages per NC (PA) = 4	Δp_k	Ра	Collector pressure drop inside
	η_m	Pas	Agent dynamic viscosity
	λ_m	W/mK	Agent thermal conductivity
<u> </u>	NC		Number of circuits
	PA		Number of passages per NC
	Q_{ki}	m2	Collector cross section inside
	r_k	m	Roughness inside of the collector
	$ ho_m$	kg/m3	Agent density
Pressure drop in the collectors			
$\Delta h_m = c p_m \Delta t_m \qquad \dot{M} = \frac{\dot{Q}}{\Delta h_m} \qquad \dot{V} = \frac{\dot{M}}{\rho_m} \qquad Q_{ki} = \frac{{D_{ki}}^2 \pi}{4} \qquad c_{km}$	$=rac{\dot{V}}{Q_{ki}}$	Re _{km}	$n_{m} = \frac{c_{km} D_{ki} \rho_{m}}{\eta_{m}}$
$r_{k(Copper)} = 0.000002$ $r_{k(Stainless steel)} = 0.000080$ $r_{k(Galver)}$	anized steel)	= 0.0001	60 $\xi_1 = \frac{64}{Re_{km}}$ $\xi_2 = 0.3164Re_{km}^{-0.25}$
$\xi_3 = 0.0054 + 0.3964 \left(Re_{km}^{-0.3} \right) \qquad \xi_4 = \left(log \left(Re_{km} \sqrt{\xi_4} \right) \right)^{-2} \qquad \xi_5 = \left(Re_{km} \sqrt{\xi_4} \right)^{-2} \qquad \xi_5 = \left(Re_{km} $	$2\log\left(\frac{D_{ki}}{r_{km}}\right)$	$(+1.14)^{-2}$	$\xi_6 = \left(-2\log\left(\frac{2.51}{Re_{km}\sqrt{\xi_6}} + \frac{r_{km}}{3.71D_{ki}}\right)\right)^{-2}$
$Re_{km} < 100 \rightarrow \xi_7 = \xi_1$ $Re_{km} \ge 100 \rightarrow \xi_7 = max(\xi_1, \xi_2, \xi_3, \xi_4, \xi_5, \xi_7)$		$\xi_{km} = \frac{\xi_{km}}{2}$	$\frac{D_{ki}}{D_{ki}} + 3 \qquad \Delta p_k = \xi_{km} \rho_m \frac{c_{km}^2}{2}$

Fin coil heat exchanger	Symbol	Unit	Description	Page 21
Definition to the smooth tubes	Q_{ri}	m2	Tubes cross section inside total	
$Q_{ri} = NC \frac{{D_i}^2 \pi}{4}$ $D_{hyd} = D_i$ $r_{r(Copper)} = 0.000002$	D _{hyd}	m	Hydraulic diameter from the tubes inside	
1	Δp_r	Ра	Pressure drop in the tubes inside	
$r_{r(Stainless steel)} = 0.000080$ $r_{r(Galvanized steel)} = 0.000160$	Δp_{ti}	Ра	Pressure drop total inside	

الم أق أم

α

Definition to the inside grooved tubes

$$Q_{ri} = NC \frac{(D_i + D_r)^2 \pi}{16}$$
 $D_{hyd} = \frac{4Q_{ri}}{A_{r2}}$

 $r_{rr(Copper)} = 0.000002$

 $r_{rr(Stainless \, steel)} = 0.000080$

 $r_{rr(Galvanized \, steel)} = 0.000160$ $r_r = r_{rr} + hsin\left(\frac{\propto \pi}{180}\right)^4$

Pressure drop in the tubes for agents without aggregate state change

$$c_{rm} = \frac{\dot{V}}{Q_{ri}} \qquad Re_{rm} = \frac{c_{rm}D_{hyd}\rho_m}{\eta_m} \quad \xi_1 = \frac{64}{Re_{rm}} \qquad \xi_2 = 0.3164Re_{rm}^{-0.25} \qquad \xi_3 = 0.0054 + 0.3964(Re_{rm}^{-0.3}) \qquad \xi_4 = \left(\log\left(Re_{rm}\sqrt{\xi_4}\right)\right)^{-2} \\ \xi_5 = \left(2\log\left(\frac{D_{hyd}}{r_r}\right) + 1.14\right)^{-2} \qquad \xi_6 = \left(-2\log\left(\frac{2.51}{Re_{rm}\sqrt{\xi_6}} + \frac{r_r}{3.71D_{hyd}}\right)\right)^{-2} \qquad \xi_7 = max(\xi_1, \xi_2, \xi_3, \xi_4, \xi_5, \xi_6) \qquad \xi_{rm} = \frac{PA\xi_7B}{D_{hyd}} + (PA - 1) \\ \Delta p_r = \xi_{rm}\rho_m\frac{c_{rm}^2}{2}$$

Pressure drop inside total from the heat exchanger

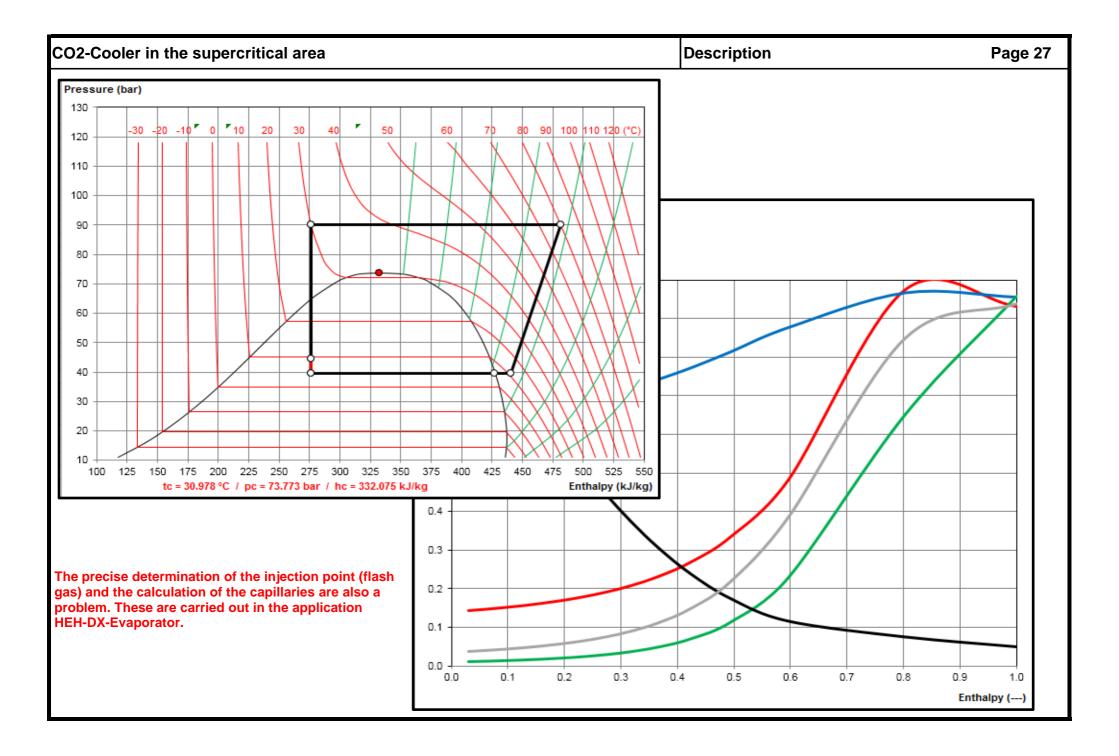
 $\Delta p_{ti} = \Delta p_r + \Delta p_{k(Inlet \ collector)} + \Delta p_{k(Outlet \ collector)}$

Fin coil heat exchanger	Symbol	Unit	Description Page 22
Heat transfer coefficient inside	η_{liq}	Pas	Agent viscosity on Liquidus
Agents without aggregate state change	g	m/s2	Fall acceleration (9.81 m/s2)
This relates to liquids or gases, so also for condensers regarding hot-gas cooling and condensate sub-cooling and for injection evaporators	λ_{liq}	W/mK	Agent thermal conductivity on Liquidus
regarding the suction gas superheat.	$ ho_{liq}$	kg/m3	Agent density on Liquidus
$Pr_m = \frac{\eta_m c p_m}{\lambda_m} \qquad \xi_m = \left(1.82 \log(Re_{rm} - 1.64)\right)^{-2}$	R	J/kg	Agent evaporation heat
$Nu_{1} = \frac{\frac{\xi_{m}}{8}(Re_{m} - 1000)Pr_{m}}{1 + 12.7\left(Pr_{m}^{\frac{2}{3}} - 1\right)\sqrt{\frac{\xi_{m}}{8}}} Nu_{2} = \sqrt[3]{3.66^{3} + 1.61^{3}Re_{rm}Pr_{rm}^{\frac{1}{3}}}$	D _{hyd} B	$Nu_3 = 0$	$.664Pr_m^{\frac{1}{3}}\sqrt{\frac{Re_m D_{hyd}}{B}} Nu_m = max(Nu_1, Nu_2, Nu_3)$
$\alpha_{i(Smooth\ tubes)} = \frac{Nu_m \lambda_m}{D_{hyd}}$			
Agents with aggregate state change (Boris Slipcevic) Condensation, evaporation in injected and flooded operation. The equations related. They lead therefore to a result only through iteration. High velocities the heat transfer, but lead to higher pressure drops, which reduce the avera logarithmic temperature difference. The pressure drop must therefore be co Pa to K.	s improve ge		Hot gas cooling ndensate sub-cooling Condensation Agent optimal Pressure drop Atm reduced Atm reduced Air Acont optimal
Condensation		•	All Agent optimal
$f_{lam} = 0.943 \left(\frac{\lambda_{liq}^{3} \rho_{liq}^{2} Rg}{\eta_{liq} B}\right)^{0.25} \qquad gi_{lam} = \frac{A_{a}}{A_{i}} \frac{1}{\alpha_{i(lam)}} \qquad gt_{lam} = \frac{A_{a}}{B}$	$\frac{1}{k_a}$	$\Delta t_{lam} =$	$\frac{gi_{lam}}{gt_{lam}} \qquad \alpha_{i(lam)} = f_{lam} \Delta t_{lam}^{0.25}$
$f_{turb} = 0.003 \left(\frac{\lambda_{liq}^{3} \rho_{liq}^{2} Bg}{\eta_{liq}^{3} R}\right)^{0.5} \qquad gi_{turb} = \frac{A_a}{A_i} \frac{1}{\alpha_{i(turb)}} \qquad gt_{turb} = \frac{A_a}{B_i} \frac{1}{\alpha_{i(turb)}}$	$\frac{1}{k_a}$	$\Delta t_{turb} =$	$\frac{gi_{turb}}{gt_{turb}} \qquad \alpha_{i(turb)} = f_{turb} \Delta t_{turb}^{0.5}$
$\alpha_{i(Smooth\ tubes)} = max(\alpha_{i(lam)}, \alpha_{i(turb)})$			

Fin coil heat exchanger	Symbol	Unit	Description Page	23
Dry expansion evaporation	η_{sol}	Pas	Agent viscosity on Solidus	
$K_{1} = \frac{\lambda_{liq}\rho_{liq}^{0.06}}{g^{0.3}\rho_{sol}^{0.66}\eta_{liq}^{0.575}\eta_{sol}^{0.225}} \qquad B_{1} = \sqrt{\frac{2S_{t}}{g(\rho_{liq} - \rho_{sol})}}$	Fge		Agent flashgas part at the inlet point	
$K_{1} = g^{0.3} \rho_{sol}^{0.66} \eta_{liq}^{0.575} \eta_{sol}^{0.225} \qquad D_{1} = \sqrt{g(\rho_{liq} - \rho_{sol})}$	H _d	J/kg	Agent enthalpy difference	
$D_1 = 0.511B_1$ $F_1 = 0.56 \int \frac{g}{D_1}$ $Q_i = \frac{\dot{Q}}{A_i}$ $H_d = R(1 - F_{ge})$	'n	kg/sm2	Agent mass flow density	
$D_1 = 0.511D_1$ $T_1 = 0.50$ $\sqrt{D_1}$ $Q_i = \frac{1}{A_i}$ $T_d = R(1 - T_{ge})$	P _u		Agent pump recirculation factor	
$B_{2} = \frac{2.059\lambda_{liq}^{0.6}H_{d}^{0.133}r_{r}^{0.133}\rho_{sol}^{0.133}}{g^{0.2}(t_{o} + 273.16)^{0.4}S_{t}^{0.3}F_{1}^{0.266}D_{1}^{0.399}\rho_{lia}^{0.233}}$	$ ho_{sol}$	kg/m3	Agent density on Solidus	
$B_2 = g^{0.2}(t_o + 273.16)^{0.4} S_t^{0.3} F_1^{0.266} D_1^{0.399} \rho_{liq}^{0.233}$	S _t	N/m	Agent surface tension	
$\dot{M} = \frac{\dot{Q}}{H_d}$ $\dot{m} = \frac{\dot{M}}{Q_{ri}}$ $\alpha_{i(kon)} = \frac{0.9(1 - F_{ge})^{0.1}K_1\dot{m}^{1.4}}{D_{hvd}^{0.5}}$	t _o	°C	Evaporation temperature on Solidus	
$H_{d} \qquad Q_{ri} \qquad D_{hyd}^{0.5}$ $\alpha_{i(bub)} = \frac{0.9(1 - F_{ge})^{0.1}B_{2}\dot{m}^{0.1}Q_{i}^{0.7}}{D_{hyd}^{0.5}} \qquad \alpha_{i(smooth\ tubes)} = max(\alpha_{i(ka)})$ Pump recirculation evaporation $K_{1} = \frac{\lambda_{liq}\rho_{liq}^{0.06}}{g^{0.3}\rho_{sol}^{0.66}\eta_{liq}^{0.575}\eta_{sol}^{0.225}} \qquad B_{1} = \sqrt{\frac{2S_{t}}{g(\rho_{liq} - \rho_{sol})}} \qquad D_{1} = 0$ $F_{1} = 0.56\sqrt{\frac{g}{D_{1}}} \qquad Q_{i} = \frac{\dot{Q}}{A_{i}} \qquad H_{d} = \frac{R}{P_{u}} \qquad \dot{M} = \frac{\dot{Q}}{H_{d}} \qquad \dot{m} = \frac{\dot{M}}{Q_{ri}}$ $B_{2} = \frac{2.059\lambda_{liq}^{0.6}H_{d}^{0.133}r_{r}^{0.133}\rho_{sol}^{0.133}}{g^{0.2}(t_{o} + 273.16)^{0.4}S_{t}^{0.3}F_{1}^{0.266}D_{1}^{0.399}\rho_{liq}^{0.233}} \qquad \alpha_{i(kon)} = \frac{K}{D}$ $\alpha_{i(bub)} = \frac{B_{2}\dot{m}^{0.1}Q_{i}^{0.7}}{D_{hyd}^{0.5}} \qquad \alpha_{i(smooth\ tubes)} = max(\alpha_{i(kon)}, \alpha_{i(bub)})$).511 <i>B</i> ₁		Injection evaporator Capillary pressure drop Pump circuit evaporator Capillary pressure drop Pump circuit evaporator Capillary pressure drop Evaporator on hot gas defrosting or condenser on change over service]

Fin coil heat exchanger	Symbol	Unit	Description	Page 24
Inside grooved tubes, heat transfer coefficient inside	$\Delta p_{r(K)}$	K	Pressure drop tot	al inside
$d_f = d_m + \left(htan\left(rac{eta\pi}{360} ight) ight) \qquad d_s = d_m - \left(htan\left(rac{eta\pi}{360} ight) ight)$	G _r	Pa/K	Gradient	
$d_{ir} = 0.75d_f + 0.25d_s X = d_{ir} \sqrt{\frac{2 \propto_i}{\lambda_w d_{ir}}} Y = \frac{tanhyp(X)}{X} Z = 1 - \left(\alpha_{i(Grooved\ tubes)} = Z\alpha_{i(Smooth\ tubes)}\right)$ Pressure drop in tubes for agents with aggregate state change	$\frac{(1-Y)A_{r1}}{A_{r2}}$, ,		
Pressure drop on condensation		Gra	dient, valid for co	ondensation and evaporation
$f_{\nu} = \frac{\eta_{liq}}{\eta_{sol}} \qquad f_{d} = \frac{\rho_{liq}}{\rho_{sol}} \qquad f_{w1} = \frac{f_{\nu}\dot{m}^{0.5}}{62\eta_{liq}^{1/6}g^{1/6}\rho_{liq}^{1/3}f_{d}^{0.1}}$		mp.(t) Pre ℃	R410A (REFPROP) ssure (p) Gradient (Gr) Pa Pa/K 89338.04	Polynomial approximation (Table Curve 2D) $p=a+bt+ct^2+dt^3$
$f_{w2} = \sum_{n=1}^{10} 0.1 \left((0.1n - 0.05)^{\frac{14}{19}} + f_{w1} (0.1n - 0.05)^{\frac{14}{19}} (1.05 - 0.1n)^{0.5} \right)^{19/8}$		2.00 198 44.00 209 6.00 219 8.00 239	88619.80 50611.13 91782.57 52578.39 98933.37 54600.09 10182.92 56678.16	a = 777887.5515 b = 27693.40974 c = 234.7441189 d = 2.568982299
$Re_{rm} = \frac{\dot{m}D_{hyd}}{\eta_{liq}} \qquad \xi_1 = \frac{64}{Re_{rm}} \qquad \xi_2 = 0.3164Re_{rm}^{-0.25}$		2.00 25 4.00 26 6.00 27	25646.03 58814.84 45442.29 61012.67 69696.70 63274.56 98540.51 65603.88 32112.21 68004.53	Gradient = Differential according to t $G_r = b + 2ct + 3dt^2$ $t = 40 ightarrow G_r = 58804.05$
$\xi_3 = 0.0054 + 0.3964 (Re_{rm}^{-0.3}) \qquad \xi_4 = \left(2\log\left(Re_{rm}\sqrt{\xi_4}\right)\right)^{-2}$	ł		70558.64 alculation method	Gradient =Pa/K)
$\xi_5 = \left(2\log\left(\frac{D_{hyd}}{r_r}\right) + 1.14\right)^{-2} \xi_6 = \left(-2\log\left(\frac{2.51}{Re_{rm}\sqrt{\xi_6}} + \frac{r_r}{3.71D_{hyd}}\right)\right)^{-2}$	$G_{r(4)}$	see gree	$\frac{p_{38}}{t_{38}} = 58814.84$	65000 60000
$\xi_7 = max(\xi_1, \xi_2, \xi_3, \xi_4, \xi_5, \xi_6) \qquad \xi_{rm} = PA\left(\frac{\xi_7 B}{D_{hyd}} + 1\right) + 5$			or is 0.0183 % e exact method	55000
$\Delta p_r = \left(\frac{\xi_{rm} f_{W2} \dot{m}^2}{2\rho_{sol}}\right) + \left(\dot{m}^2 \left(\frac{1}{\rho_{liq}} - \frac{1}{\rho_{sol}}\right)\right) \qquad \Delta p_{r(K)} = \frac{\Delta p_r}{G_r}$		to the d	, one go closer critical point, eases significantly.	50000 30 35 40 45 50 Temp. (°C)

Fin coil heat exchanger	Symbol	Unit	Description Page 25
Pressure drop on dry expansion evaporation	D _{ak}	m	Capillary outside diameter
$f_{v} = \frac{\eta_{liq}}{\eta_{sol}} \qquad f_{d} = \frac{\rho_{liq}}{\rho_{sol}} \qquad f_{w1} = \frac{f_{v}\dot{m}^{0.5}}{62\eta_{lia}{}^{1/6}g^{1/6}\rho_{lia}{}^{1/3}f_{d}{}^{0.1}}$	D _{ik}	m	Capillary inside diameter
$\eta_{sol} = \eta_{sol} = \rho_{sol} = 0.1 = 62\eta_{liq} f_{liq}^{1/6} \rho_{liq} f_{d}^{1/3} f_{d}^{0.1}$	Δp_k	Ра	Pressure drop in the capillaries
$f_{w2} = \sum^{10} 0.1 \left((0.1n - 0.05)^{\frac{14}{19}} + f_{w1}(0.1n - 0.05)^{\frac{14}{19}} (1.05 - 0.1n)^{0.5} \right)^{19/8}$	S_k	m	Capillary thickness
$\sum_{n=1}^{\infty} c_n (c_n c_n c_n c_n c_n c_n c_n c_n c_n c_n $	Fgak		Flashgas on capillary outlet
$Re_{rm} = \frac{\dot{m}D_{hyd}}{\eta_{sol}} \qquad \xi_1 = \frac{64}{Re_{rm}} \qquad \xi_2 = 0.3164Re_{rm}^{-0.25}$	$h_{(\dots)}$	J/kg	Enthalpie on (…)
$\xi_3 = 0.0054 + 0.3964 (Re_{rm}^{-0.3}) \qquad \xi_4 = \left(2\log\left(Re_{rm}\sqrt{\xi_4}\right)\right)^{-2}$	L_k	m	Capillary length
$\xi_{5} = \left(2\log\left(\frac{D_{hyd}}{r_{r}}\right) + 1.14\right)^{-2} \xi_{6} = \left(-2\log\left(\frac{2.51}{Re_{rm}\sqrt{\xi_{6}}} + \frac{r_{r}}{3.71D_{hyd}}\right)\right)$ $\Delta p_{r} = \left(\frac{\xi_{rm}f_{w2}\dot{m}^{2}}{2\rho_{sol}}\right) + \left(\dot{m}^{2}\left(\frac{1}{\rho_{sol}} - \frac{1}{\rho_{liq}}\right)\right) \qquad \Delta p_{r(K)} = \frac{\Delta p_{r}}{G_{r}}$ Pressure drop in the capillaries $F_{gak} = 1 - \frac{R - h_{(tsc)} + h_{(to'')}}{R} \qquad \eta_{m} = F_{gak}\eta_{sol} + (1 - F_{gak})\eta_{liq}$ $\dot{V}_{m} = \frac{\dot{M}}{\rho_{m}} \qquad Q_{ki} = NC\frac{D_{ik}^{2}\pi}{4} \qquad Re_{km} = \frac{\dot{m}D_{ik}}{\eta_{m}} \qquad \xi_{1} = \frac{64}{Re_{km}}$ $\xi_{3} = 0.0054 + 0.3964(Re_{km}^{-0.3}) \qquad \xi_{4} = \left(2\log\left(Re_{km}\sqrt{\xi_{4}}\right)\right)^{-2}$ $\xi_{7} = max(\xi_{1},\xi_{2},\xi_{3},\xi_{4},\xi_{5},\xi_{6}) \qquad \xi_{km} = PA\left(\frac{\xi_{7}L_{k}}{D_{i\nu}}\right) + 2.5 \qquad \Delta p_{k} = \frac{\xi_{km}\eta_{km}}{\rho_{m}}$	$\rho_m = \frac{1}{1}$ $\xi_2 = \xi_5 = \left(2\log_2 \frac{1}{1}\right)$	$\frac{1}{\frac{F_{gak}}{\rho_{liq}}} + 0.3164 Re_{p}$	$\overline{F_{gak}}_{cm} \xrightarrow{-0.25} (m^{-0.25})$


Fin coil heat exchangerSymbolUnitDescriptionPage 26Pressure drop on pump recirculation evaporation
$$F_{ga}$$
---Flashgas part on the outlet point $f_v = \frac{\eta_{liq}}{\eta_{sol}}$ $f_{w1} = \frac{f_v \dot{m}^{0.5}}{62\eta_{liq}^{1/6} g^{1/6} \rho_{liq}^{1/3} f_d^{0.1}}$ $F_{ga} = \frac{1}{P_u}$ $q = \frac{F_{ga}}{20}$ $f_{w2} = \sum_{n=1}^{10} 0.1 \left(\left(q(2n-1)\right)^{\frac{14}{19}} + f_{w1}(q(2n-1))^{\frac{14}{19}} (F_{ga} - q(2n-1))^{0.5} \right)^{19/8}$ $Re_{rm} = \frac{\dot{m}D_{hyd}}{\eta_{liq}}$ $\xi_1 = \frac{64}{Re_{rm}}$ $\xi_2 = 0.3164Re_{rm}^{-0.25}$ $\xi_3 = 0.0054 + 0.3964(Re_{rm}^{-0.3})$ $\xi_4 = \left(2log\left(Re_{rm}\sqrt{\xi_4}\right)\right)^{-2}$ $\xi_5 = \left(2log\left(\frac{D_{hyd}}{r_r}\right) + 1.14\right)^{-2}$ $\xi_5 = \left(2log\left(\frac{D_{hyd}}{r_r}\right) + 1.14\right)^{-2}$ $\xi_6 = \left(-2log\left(\frac{2.51}{Re_{rm}\sqrt{\xi_6}} + \frac{r_r}{3.71D_{hyd}}\right)\right)$ $\xi_7 = max(\xi_1, \xi_2, \xi_3, \xi_4, \xi_5, \xi_6)$ $\xi_{rm} = PA\left(\frac{\xi_{7B}}{D_{hvd}} + 1\right) + 5$ $\Delta p_r = \left(\frac{\xi_{rmfw2}\dot{m}^2}{2\rho_{sol}}\right) + \left(\dot{m}^2\left(\frac{1}{\rho_{sol}} - \frac{1}{\rho_{liq}}\right)\right)$ $\Delta p_{r(K)} = \frac{\Delta p_r}{G_r}$

CO2-Cooler in the supercritical area

Because the thermodynamic values for cooling of CO2 in the supercritical range extremely change, the cooling process must be divided into 15 cells. The heat transfer coefficients, the mean logarithmic temperature difference and thus the need for a heat exchange surface change in the cells.

The calculation for the heat transfer coefficient and pressure drop occurs in the individual cells, as in the case of the media without a change in the state of the aggregate.

Carbon dioxide R744 (CO	arbon dioxide R744 (CO2) supercritical			Pressure (bar)
Pressure Inlet Outlet Mass flow Density in Density out Volume flow in Volume flow out Velocity in Velocity out	bar °C kg/h kg/m3 kg/m3 m3/h m3/h m3/h m3/h	90.000 110.000 35.000 3214.497 154.930 662.130 20.748 4.855 3.467 0.811	120 100 80 60 40 20	100 90 80 70 60 50 40 30 20
Pressure drop	kPa	42.955		

Combination of gas mixtures and condensable vapors	Description	Page 28

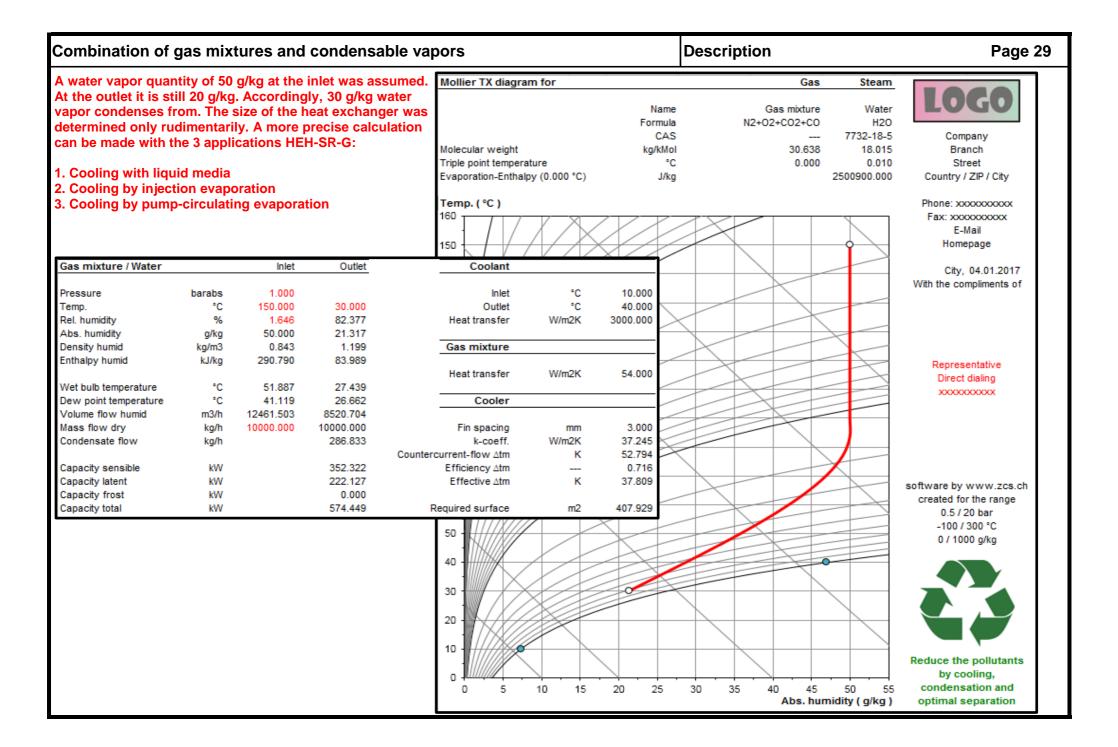
There is very good software, such as REFPROP from NIST, which allows the calculation of the thermodynamic values of non-condensable mixed gases. A partial condensation of water is not taken into account. Software that would allow such calculations is not offered at a reasonable price. With the applications GHH and HEH-SR-G we offer the possibility to carry out such calculations at a reasonable price. By means of REFPROP from NIST, the mixed gas is first determined without condensable water vapor. Subsequently, the cooling process with condensable water vapor is calculated in the application GHH. GHH is therefore a Mollier diagram for non-condensable mixed gases with the possibility of calculating a partial condensation of water without determining the exact size of the heat exchanger. Alternatively, HEH-SR-G applications can be directly used when determining the size of the heat exchanger.

Mityfulee	formation
TIALUIC	UTHALIUH

×

Mixture name: nitrogen/oxygen/carbon dioxide/carbon monoxide

REFPROP - NIST Reference Fluid Properties (DLL version 9.1)


File Edit Options Substance Calculate Plot Window Help Cautions

Molar mass: 30.638 kg/kmol

Critical Poi	nt Cricondenther (Max Temp.)		
Unknown	-67.404 7091200.0		
sition	Mass Fraction		
	0.55		
	0.25		
de	0.15		
kide	0.05		

Example of a mixed gas of 4 non-condensable gases, thus without condensable water vapor, calculated with REFPROP from NIST. For our applications GHH and HEH-SR-G the values of -100 to 300°C are required in steps of 25 K even if, for example, only a cooling process from 150 to 30°C is to be calculated. Furthermore, the proportion of partially condensable water vapor has to be entered into these applications. In the following example, the cooling occurs with water from 10 to 40°C.

Cricondenther	1: nitrogen/	oxygen/carbor	n dioxide/c	arbon mon	oxide: p =	100000.0 Pa (55	5/25/15/5)	
Max Temp.) 67.404 7091200.0		Temperature (°C)	Pressure (Pa)	Density (kg/m³)	Cp (J/kg-K)	Therm. Cond. (W/m-K)	Viscosity (Pa-s)	Prandtl
60.34	1	-100.00	100000.	2.1395	965.59	0.015077	0.000011493	0.73607
	2	-75.000	100000.	1.8660	966.75	0.017183	0.000012951	0.72864
	3	-50.000	100000.	1.6550	969.52	0.019194	0.000014351	0.72492
ss Fraction	4	-25.000	100000.	1.4872	973.15	0.021158	0.000015697	0.72200
0.55	5	0.00000	100000.	1.3504	977.31	0.023085	0.000016994	0.71944
0.25	6	25.000	100000.	1.2367	981.86	0.024974	0.000018244	0.71727
0.15	7	50.000	100000.	1.1407	986.74	0.026826	0.000019453	0.71555
0.05	8	75.000	100000.	1.0586	991.93	0.028641	0.000020624	0.71430
	9	100.00	100000.	0.98756	997.43	0.030419	0.000021760	0.71352
able	10	125.00	100000.	0.92545	1003.2	0.032162	0.000022864	0.71320
por, our	11	150.00	100000.	0.87071	1009.3	0.033873	0.000023939	0.71331
s of -100	12	175.00	100000.	0.82209	1015.7	0.035553	0.000024986	0.71379
if, for	13	200.00	100000.	0.77861	1022.2	0.037204	0.000026008	0.71461
to 30°C is on of	14	225.00	100000.	0.73951	1029.0	0.038828	0.000027006	0.71571
e entered	15	250.00	100000.	0.70416	1036.0	0.040427	0.000027981	0.71704
ample,	16	275.00	100000.	0.67203	1043.0	0.042002	0.000028936	0.71856
0°C.	17	300.00	100000.	0.64271	1050.2	0.043555	0.000029871	0.72023

combination of gas mixtures and condensable vapors							Description				Page 30		
Cooler: 42/36/20-12R-30T-180	0A-3.0PA-30C-AI	SI 316/AISI 316	6/AISI 316					•					
Capacity	kW	570.980	sensible:	352.635	LOGO		Applic	ation	GHH	HEH-SF			
Surface reserve	%	7.321	latent:	218.345			Applic	ation	Gun	TET-ST	K-G		
Present surface	m2	434.640	frost:	0.000	Company		_						
Required surface	m2 🗖	404.989			Branch		Capac	ity sensible	352 kW	353 kW			
k-coeff.	W/m2K	37.254 -	ffi:	5.000E-05	Street		Capac	ity latent	222 kW	218 kW			
Mean temp. diff.	к	37.845	ffa:	5.000E-05	Country / ZIP / City	·		ity total	574 kW	571 kW			
Gas mixture / Water		Inlet	Outlet	Medium	Phone: xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx					105 0			
					Fax: xxxxxxxxxx E-Mail		Requir	ed surface	407 m2	405 m2			
Pressure	bar	1.000			Homepage								
Temp.	°C	150.000	30.000	90.000									
Rel. humidity	%	1.646	84.197	10.504	City, 04.01.20	17							
Abs. humidity	g/kg	50.000	21.805	46.797	With the compliments								
Density humid	kg/m3	0.843	1.198	0.984		-							
Enthalpy humid	kJ/kg	290.790	85.237	214.544		- F							
Volume flow humid	m3/h	12461.503	8527.533	10639.337	Representative								
Mass flow dry	kg/h	10000.000	10000.000	10000.000	Direct dialing		Piece	360	Tubes:	flat	AISI 316		
Condensate flow	kg/h		281.950		XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX		Piece	0		staggered			
Surface temperature	°C	77.812	16.875				Piece	0	Collectors:	1.23 m/s	AISI 316		
Velocity	m/s	1.526	1.044				Piece	0	Connections:	1.23 m/s	AISI 316		
Pressure drop (dry 119 Pa)	Pa		139.544		Software by www.zc	s.ch	Piece	12	Fins:	ribbed	AISI 316		
							Piece	30	Frame:	2.00 mm	AISI 316		
Water		Inlet	Outlet	Medium (Piece	12	Circulations:	1	Default		
							Piece	30	Protection:		without		
Temp.	°C	10.000	40.000	25.000			1	191					
Density	kg/m3			997.209			kg	2024	El. heat rods:				
Spec. heat	kJ/kgK			4.180				2 1/2"	Air flow direction:		horizontal		
Heat cond.	W/mK			0.611			mm	1340	Special:	Bottom pla	te perforated		
Viscosity	Pas			8.901E-04			mm	2070		for perfect cond			
Volume flow	m3/h			16.438 ⁰ 0.598		9	mm	510		ter perioer our	constants analit		
Velocity	m/s kPa						mm	1260	Spira Frib's AD	LB RN			
Pressure drop	кра			15.066			mm	1800	<u>_</u>	<u>ି</u> ଥ			
When we afave to let less					i width	LB					• []		
Who prefers to let lay					I depth		mm	436			靑 巾		
an contact us for wh	at we need c	of states			on top	RO	mm	40	╕ ᆂ ᡛᢪ╸∞ ⊪		-		
ourse all data. We wi	ill gladly pro	vide	1 Contraction		on bottom	RU	mm	40	▝▝▝▋	년]티			
ou with an offer on a			A CONT		in front	RV	mm	30	U	ا اللك ا			
		5			on back (~84mm)	RN	mm	84	the second se		↓ Ψ =		
chould be noted the	ot we make a		6 1		tor-Diameter	ĸ	mm	76	<u>ול¶יל¶יל</u> ו דהו	RV ⊇	IIKAII		
should be noted, the			C. And	Collec	tor covering	AD	mm	186	¶◢ੋੈੈ	BT			
alculations only agai	inst prepaym	nent.	Carrier 1	Collec	tor distance	KA	mm	401	- '(\$)(\$) •	•	RT		
				Fin sp	acing	LT	mm	3.000	+ $+$				
		115		Fin thi	ckness	LD	mm	1.000	Delivery:		5-6 weeks		
ertEng. Marin Zelle				Tube	diameter	d / D	mm	20.000 40.00			12 weeks		
entLing. Marin Zelle	10, VDI			Tube t	hickness	S	mm	1.000	Condit.:	net, pre	paid address		
					nterval on the height	S1	mm	42.000	Payment:		30 days net		
					nterval on the depth	S2	mm	36.373	Non el. rods:	EUR	38802.00		