

HEH Software (Fin coil heat exchanger)

Fin coil surface	Different manufacturers can offer heat exchangers in terms of price and surface with differences to 50%, although the equation for the required surface is very easily. The problem for the big differences in terms of price and surface is given by 6 influence factors:	$F = \frac{\dot{Q}}{k \cdot \Delta tm}$
	 Accurate performance calculation, considering the condensation Conservative k-value calculation, taking into account the fouling Accurate calculation of Δtm, taking into account the pinch point Sufficient fin thickness > 0.20 mm for optimum heat conduction Optimal contact between the fins and tubes Optimal surface ratio Fo/Fi (fins and tubes) 	case in a series of the case o
Capacity	For humid air cooling, the opinions about the latent capacity deferred share far apart. Only those which calculated the cooling process with finite elements, can accurately determine, how the cooling process expires. They also play an important role a sufficient fin thickness, a good contact between the fins and tubes and an optimum surface ratio between fins and tubes because that much influence the surface temperature and the creating of condensation. For the humid air and the coolant, during the cooling process, Reynolds go down and Prandtl go up. That's reason the k-value go down. Once formed condensate however, the k-value go up. This can be done only by finite elements taken into account.	Coolant temperatures Rel. Humidity = 100 %
Δtm	The beautiful exponential temperature gradients in the chart right must be forgotten, just because at the beginning sensitive capacity exists only and at the end only, latent capacity can be removed. The temperature gradients deform. Since the temperature difference Δ tm must understood as surface between the two temperature gradients, this reduced that extreme, well understood in countercurrent-flow too!	Exponential functions for countercurrent-flow
Pinch Point	As pinch point means in the thermodynamic process technology the smallest temperature difference between the two media, whether this value between several heat exchangers or inside a heat exchanger occurs. What everyone understands concerning the refrigerant conden- ser, revealed to the cooler for humid air only, if it anticipates using finite elements.	Pinch Point
Fin thickness	When using thick fins, the area is not bigger but the weight and the price rise however. What is also rising, the fin efficiency, which results a better k-value and a lower surface temperature with larger droplet condensation, which is easier to separate.	Effective functions for real-flow
Contact fins / tubes	If the contact is bad between the fins and tubes, decreases the k-value and the capacity. The surface temperature rises, and it will be less con- densed. The drop size is small (aerosol) like fog and can't separated without a combination of demister and drop separator.	Hotgas Condensation Sub-cooling
Surface ratio Fo/Fi	In times of rising copper prices, some manufacturers came up with the idea of sharing the pipe to double, so only half pipes, instead, suggesting the surface marginal influence, but at the k-value very negative impact, and thus the capacity slackens.	Pinch Point

Cooler: 35/35/12-20R-40T-14	1 17.					
Canacity			0.1.07		70.000	zcs.ch
		KVV	94.074	sensible:	78.826	
Surface reserve		%	0.904	latent:	15.249	Zeller Consulting Ouises
Present surface		m2	1029.537	frost:	0.000	
Heat transfer coefficient		1112 W/m2k	24 998	ffi-	5 000E-05	lurastrasse 35
Mean temp diff (74 77 %)		W/IIIZK K	24.990	III. ffa:	5.000E-05	CH-3063 Ittigen
		IX.	3.000	na.	0.000E 00	on soos migen
Air humid			Inlet	Outlet	Definition	Phone: +41-79-2226642
						Fax:
Height over sea level		m			0.000	info@zcs.ch
Pressure		hPa		0.000	1013.250	www.zcs.ch
Temp.		°C	20.000	2.000	20.000	Winese 17 00 0014
		% */\.*	40.000	100.000	40.000	Ittigen, 17.08.2011
Abs. humidity		g/kg ka/m2	5.764 1.200	4.373		with the compliments of
Entholov humid		kg/ms	1.200	12/9		
Volume flow burnid		m3/h	13000 000	1217/ 300	13000.000	Cert Eng Marin Zeller TU
Mass flow dry		ka/h	15506 151	12174.390	13000.000	Direct dialing
Condensat flow		ka/h	10000.101	21 877		+41-79-2226642
Surface temperature		°C	16.558	0.218		
Velocity		m/s	1.842	1.725		zcs.ch // Quality
Pressure drop (dry 101 Pa)		Pa		109.414		Software development www.zcs.ch
25 % Et alvcol			Inlet	Outlet	Medium	
25 /0 Et.grycol			mict	Ouliet	(
Temp.		°C	-2.000	14.000	6.000	
Density		kg/m3			1042.210 (
Heat cont.		kJ/kgK			3.695	
Heat cond.		W/mK			0.456	
Viscosity		Pas			2.827E-03	
Volume flow		m3/h			5.496	
Velocity		m/s			0.903	
Pressure drop		кРа			133.129	
Tecnical datas						
Tubes total		Piece	800		Tubes [.]	flat Cu
Tubes blanc		Piece	000		10000.	in line
Internal ventings		Piece	9		Collectors:	1.28 m/s Cu
Internal drains		Piece	9		Connections:	1.28 m/s Rg7
Tube rows on the depth		Piece	20		Fins:	flat Al
Tube rows on the height		Piece	40		Frame:	2.00 mm AIMg3
Tube coupling in series		Piece	50		Circulations:	1 Default
Number of circuits (NC)		Piece	16		Protection:	without
Volume		1	129			
Weight		kg	454		El. heat rods:	
Connections	G		1 ½"	A	Air flow direction:	horizontal
Frame height	RH	mm	1480		Special:	Bottom plate perforated
Frame width	BT	mm	1571			for perfect condensate drain
Frame depth	RT	mm	740			
Finned height	LH	mm	1400	ia	AD LB	RN 1 2
Finned width	LB	mm	1400	_ _	•	
Finned depth	LF	mm	700			
Frame on top	RO	mm	40			
Frame on bottom	RU	mm	40	ØK		
	KV DN	rnm	40	പ		
Collector-Diameter	KIN K	mm	40			<u> </u>
Collector covering		mm	42 131	Ť	RV	
Collector distance	KΔ	mm	670		BT	
Fin spacing	LT	mm	2.500			
Fin thickness	LD	mm	0.200	Delivery:		5-6 weeks
Tube diameter	DA	mm	12.400	Validity:		12 weeks
Tube thickness	S	mm	0.400	Condit.:		net, prepaid adress
Tube intervall on the height	S1	mm	35.000	Payment:		30 days net
Tube intervall on the depth	S2	mm	35.000	Price net:	Non el. rods	EUR 7085.00

Required surface (%) Heat transfer coefficient (%) Direct dialing +41-79-2226642

Cooler			Inlet	Outlet	Indication
Temp.	t	°C	20.000	2.000	0
Abs. humidity	x	g/kg	5.784	4.373	
Dew point temperature	td	°C	5.968	2.030	\bigcirc
Abs. humidity	xs	g/kg	5.784	4.373	
Surface temperature	ts	°C	16.558	0.218	\bigcirc
Abs. humidity	xs	g/kg	11.769	3.845	
25 % Et.glycol	ta	°C	14.000	-2.000	•
Abs. humidity	x	g/kg	11.769	3.845	